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On the Definition of Temperature in FPU Systems
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It is usually assumed, in classical statistical mechanics, that the temperature
should coincide, apart from a suitable constant factor, with the mean kinetic
energy of the particles. We show that this is not the case for Fermi–Pasta–Ulam
systems, in conditions in which energy equipartition between the modes is not
attained. We find that the temperature should be rather identified with the mean
value of the energy of the low frequency modes.
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1. INTRODUCTION

The Fermi–Pasta–Ulam system consists of a chain of N nonlinear oscilla-
tors with certain given boundary conditions, tipically fixed ends. It is well
known (see refs. 1 and 2) that, for energies below a certain threshold Ec, if
the energy is initially given to a few low frequency modes, equipartition
of energy among the modes is eventually attained only after an extremely
long time, while at intermediate times a kind of metaequilibrium state is
attained, in which the energy is shared essentially within a packet of low
frequency modes.

An interesting and much discussed problem, is whether the specific
energy threshold Ec/N vanishes or not in the limit of an infinite number of
particles. Here we leave this problem aside: we will suppose for example
that the number N of particles be fixed, so that the threshold certainly
exists. We address instead the problem raised by the fact that below the
threshold one meets, as in the theory of glasses, with time scales to thermal
equilibrium which are very long, even longer than any fixed observational



time scale. Does this lack of thermalization have any consequences on the
relevant thermodynamical quantities? or even, is it possible to correctly
(i.e., uniquely) define the quantities of interest? In other words, is it still
possible to have a thermodynamics below the threshold?

In the literature, the discussion is usually focused on the specific heat,
because from heuristic arguments it is suggested that to less chaotic
motions there correspond smaller specific heats, with eventually zero speci-
fic heat for totally ordered motions (i.e., for integrable systems). Thus it is
expected that by lowering the energy below threshold the specific heat
should diminish; such a property, in turn, should be considered as a good
indicator of the weakening of chaos.

The papers, (3, 4) which aim at evaluating the specific heat of Fermi–
Pasta–Ulam systems below threshold by numerical computations, reach
two opposite conclusions: in ref. 3 the value of the specific heat remains
constant (as would follow from the equipartition principle) even below the
threshold, while in ref. 4 the specific heat indeed begins to fall down, below
the threshold, and finally vanishes as temperature goes to zero. This strik-
ing difference is apparently due to the different methods used in the two
papers in estimating the specific heat. Actually, in both papers the
Fermi–Pasta–Ulam system is kept isolated (fixed ends), so that a direct
measurement of the specific heat is precluded (because a direct measure-
ment requires at least one heat bath). The specific heat is then estimated
from the fluctuations of energy of a subsystem through the well known
relation between specific heat and mean square deviation of energy, which
holds in the canonical ensemble. The two papers differ in the choice of the
subsytem: in the paper, (3) one considers the energy fluctuations of a small
piece of the total chain, while in ref. 4 one considers the energy fluctuations
of a small packet of nearby modes. As the energy of each mode remains
nearly constant below the threshold while the energy of a piece of chains
still presents large fluctuations, this indeed explains why the two papers
reach opposite conclusions. Now, at most only one of the conclusions can
be correct, if a right conclusion does exist at all; indeed it is not clear
whether the specific heat can be defined in an unambiguous way below the
threshold.

A different approach was proposed in the paper. (5) In short, the basic
remark is the following one. As the above mentioned relation between
specific heat and energy fluctuations is obtained from the equilibrium
Gibbs ensemble, then its validity below the threshold is in doubt just
because, up to the considered times, the system has not yet thermalized. So,
it is argued that in measuring the specific heat one should revert to the
conventional method which makes use of a heat bath at a given tempera-
ture T coupled to the Fermi–Pasta–Ulam system, with the corresponding
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familiar calorimetric expression for the specific heat. Namely, the energy
exchange DQ between the bath and the Fermi–Pasta–Ulam system is
measured when the temperature is varied by DT, then the ratio DQ/DT is
computed, and (in principle) the limit is taken for vanishing DT. However,
even with such a method, one is still confronted with a delicate problem,
because the amount of exchanged energy DQ does depend on how much
time one has waited in making the measurement (this is the so-called
waiting time problem of the theory of glasses). The curve predicted by
equipartition is recovered for infinitely long waiting times, while for finite
waiting times the specific heat is expected to vanish at sufficiently low
temperatures.

The question is thus: does there exist a natural way to choose a defi-
nite waiting time? Another problem then arises, due to the fact that, in the
ratio DQ/DT defining the specific heat, one should insert in the denomina-
tor the variation of temperature of the Fermi–Pasta–Ulam system and not
that of the bath. The question is then whether the temperature of the
Fermi–Pasta–Ulam system is the same as that of the heat bath. The very
fact that the quantity DQ depends on the waiting time actually shows that
this is not the case, just because the equality of the two temperatures would
imply DQ=0. On the other hand, if one were able to identify the tempera-
ture of the Fermi–Pasta–Ulam system, then the question of the waiting
time would have a quick answer: one should wait until the heat bath tem-
perature and that of the Fermi–Pasta–Ulam system have become equal,
and only at that time should one measure the corresponding energy
exchange. So the possibility of having available well defined thermody-
namic quantities on short time scales is based on the possibility of provid-
ing a good notion of temperature for the FPU system before complete
equipartition be achieved. From this point of view, the identification
usually made of the temperature of the Fermi–Pasta–Ulam system with the
mean kinetic energy of its particles is not the correct one, because in such a
case the temperatures of the two systems (Fermi–Pasta–Ulam system and
heat bath) would remain different for extremely long times.

The identification of the mean kinetic energy with temperature is so
deeply rooted in our minds, that the existence of another quantity playing
that role seems hardly conceivable. The aim of this paper is to show instead
that this is possible.

In Section 2 we give a preliminary discussion of the zeroth law for
states of metaequilibrium such as those of the Fermi–Pasta–Ulam system
below threshold, in Section 3 we describe the model we employ for mea-
suring of the temperature of the Fermi–Pasta–Ulam system through heat
baths by numerical computations, and the numerical results are given in
Section 4. Some final comments are given in Section 5; in particular,
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a comparison is made of the present model with other ones also involving
chains coupled to heat baths.

2. ZEROTH LAW AND TEMPERATURE IN STATES OF

METAEQUILIBRIUM

One of the basic features of thermal equilibrium is the so-called zeroth
law, which essentially amounts to the transitivity of the equilibrium. From
this follows (see ref. 6) that for any system there exists a function of its
macroscopic state (the so called empirical temperature) which has the same
value for bodies in equilibrium.

However, it is not granted that, for a given macroscopic state, the
equilibrium is unique if some of the internal degrees of freedom are
dynamically frozen. We are thinking typically of the case of polyatomic
molecules (see ref. 8) for which it is known that the exchanges of energy
between the center of mass and the internal degrees of freedom are so slow
that the number of effective degrees of freedom depends on the time of
observation. This is actually the general situation that occurs in states of
metaequilibrium.

We thus address the problem whether it is possible to have a zeroth
principle, and so also an empirical temperature, in situations of meta-
equilibrium, in which the physical quantities are changing only on a very
long time scale. So, if we put our Fermi–Pasta–Ulam system in heat
contact with another body, and observe that at first there is a rapid relaxa-
tion to a certain state, while a later evolution to a final equilibrium would
take place on a time scale much longer than our observational scale, we can
think of our system as if it were equilibrated. Obviously, one is not granted
that in such a situation the zeroth law, i.e., the transitivity of this meta-
equilibrium state, holds. But, if this is the case, an empirical temperature
can be defined. In other terms, if we put the Fermi–Pasta–Ulam system in
contact with a thermometer which, after a short transient, appears to have
reached a temperature T (not evolving on our time scale), and if later, after
having put the Fermi–Pasta–Ulam system in contact with another body
(for example a heat bath) at the same temperature T, nothing seems to
occur (i.e., there is no exchange of energy in mean between the bodies),
then the metastable state reached does have the transitive property, and we
are authorized to assign to the Fermi–Pasta–Ulam system the temperature
T reached by the thermometer.

An equivalent arrangement, which we have actually implemented in
our numerical simulations to be described below, is the following one: the
Fermi–Pasta–Ulam system is put at the same time in contact both with a
heat bath and with a thermometer (obviously, with no direct connection
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between the two external bodies). In such a situation, the transitive prop-
erty reduces to the property that in a short time the thermometer attains
the same temperature of the heath bath; the subsequent evolution to a final
equilibrium should take place later, at a much smaller rate. Then, by defi-
nition, the temperature of the Fermi–Pasta–Ulam system in the meta-
equilibrium state is the one reached by the thermometer after the short-
time relaxation.

This definition can appear satisfactory from an operative point of
view. However, as it stands, it still lacks a clear connection with the prop-
erties of the Fermi–Pasta–Ulam system itself. Indeed there remains the
problem of understanding, how the zeroth law can hold even if the
Fermi–Pasta–Ulam system did not yet thermalize. In this connection, we
make reference to a known phenomenon (2) concerning the isolated Fermi–
Pasta–Ulam system, namely the fact that, below threshold, for initial exci-
tations of the low frequency modes the energy turns out to remain confined
to modes below a certain critical mode kcr, while the higher modes are not
significantly involved in the dynamics. Notice, moreover, that an analogous
phenomenon, i.e., a dynamical involvement restricted to the modes of suf-
ficiently low frequency, is know to occur also when a system is coupled to
an external body, for the case of polyatomic molecules (see ref. 7). So, it is
known that, on a short time scale, the high frequencies modes (above kcr)
do not get dynamically involved, neither by the internal nonlinarities nor
by an interaction with external bodies. In both cases a packet of low
frequency modes is formed which are in mutual equilibrium, and moreover
are active in the process of thermalization with external bodies. Only after
a much larger time scale there follows a relaxation of the Fermi–Pasta–
Ulam system to the true equilibrium state. Before, it appears as if there
existed an adiabatic partition (of a dynamical nature) between low and
high frequency modes.

If this is the correct picture, it is clear to what property of the Fermi–
Pasta–Ulam system should our definition of temperature correspond:
namely, to the mean energy of each of the low frequency modes (those
below kcr). In the rest of the paper we will illustrate the results of some
numerical computations, which, in our opinion, strongly support the fact
that such a metaequilibrium is transitive, and that the empirical tempera-
ture thus defined coincides with the energy of the low frequency modes.

3. THE MODEL

As mentioned above, the model is constituted by a Fermi–Pasta–Ulam
system in contact with two bodies, acting, the one as a thermometer and
the other one as a heat bath. We make the simplest choice, in which the
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two bodies are perfect gases. Each gas is modeled as a system of point par-
ticles having no interactions among them, while interacting with the
Fermi–Pasta–Ulam system through some smooth force between each of the
gas particles and one of the edge Fermi–Pasta–Ulam particles. In more
detail, concerning the Fermi–Pasta–Ulam system we denote as usual by xi,
i=1,..., N, the distance of the ith particle from its equilibrium position,
by pi its conjugate momentum, and consider the familiar ‘‘b-model’’
Hamiltonian

HFPU= C
N

i=1

p2
i

2m
+ C

N

i=0

5W2

2
(xi+1 − xi)2+

b

4
(xi+1 − xi)46 , (1)

involving two positive parameters b and W, with fixed boundary conditions
x0=0, xN+1=0. Now, to the ‘‘left’’ of the Fermi–Pasta–Ulam chain we
place a perfect gas which acts as a heat bath: denoting by yi, pi the ith gas
particle’s position and momentum respectively, we have − L < yi < x1, with
L > 0 playing the role of the volume of the gas. The motion of each particle
is thus free apart from the fact that it suffers an elastic reflection as
yi=−L, and that it moreover interacts with the first Fermi–Pasta–Ulam
particle x1 through a short range potential, which we choose as

V=V0
e−(yi − x1)/l0

(yi − x1)/l0
,

l0 and V0 denoting its range and strength respectively. In agreement with
the bound given above, due to the singularity of the potential at yi=x1,
the solutions yi(t) of the equations of motion cannot cross the point x1(t),
i.e., for all times t one has − L < yi(t) < x1(t). The Hamiltonian of the heat
bath is thus

HB= C
N

i=1

5 p2
i

2m
+V0l0

e−(yi − x1)/l0

(yi − x1)
6 , (2)

supplemented by the boundary condition that the particles are reflected at
yi=L.

To the ‘‘right’’ of the Fermi–Pasta–Ulam chain we place the ther-
mometer, which is taken again as a perfect gas, with Hamiltonian

HT= C
N

i=1

5 p̃2
i

2m
+V0l0

e−(ỹi − xN)/l0

(ỹi − xN)
6 , (3)

(plus a reflection condition at ỹi=L) where ỹi, p̃i are the positions and
momenta of the gas particles respectively; each of the particles interacts
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only with the last particle xN of the Fermi–Pasta–Ulam system via the same
potential as for the heath bath.

In our simulations we chose an equal number of particles for the three
systems, while in principle the number of bath particles should be larger
than that of the Fermi–Pasta–Ulam system, and this in turn should be
larger than that of the thermometer. Our choice is dictated only by the
computational power available: we cannot take the total number of par-
ticles too large, but at the same time the number of particles in each system
cannot be too small if a good statistics has to be insured. Taking the same
number N=100 of particles for each of the three subsystems, seemed to us
a good compromise.

We took as units of mass, length and energy the values m, l0, and V0,
which were thus put equal to one in our computations. The values of the
parameters W and b were set equal to W=400 and b=3742 respectively.
Such strange values come from the following consideration: the intermole-
cular interaction in a crystal is well represented by a Lennard-Jones poten-
tial, whose relevant parameters (the range and the strength) are of order
one with our choice of units. On the other hand the Fermi–Pasta–Ulam
potential should just be a Taylor expansion of the Lennard-Jones potential
around the equilibrium position. Performing such a Taylor expansion and
putting the parameters equal to one, the indicated values for W and b are
found.

Finally in our numerical simulations we took L=25; this in order to
ensure a sufficient total number of collisions (of the order 106 in our actual
integrations), while at the same time letting the gas particles be free for a
large part of their paths.

4. NUMERICAL RESULTS

The integration step was taken equal to a twentieth of the shortest
period yf=p/W of the Fermi–Pasta–Ulam chain, and the numerical solu-
tions were computed up to times of order 2 · 107yf.

The numerical experiments were performed in the following way. For
the bath we chose a temperature T1 and took random initial conditions
extracted from a Maxwellian at the chosen temperature T1 (we also checked
that the value of the mean kinetic energy should not deviate too much from
the expected one, in order to avoid too large fluctuations); for the Fermi–
Pasta–Ulam system we chose initial data at equipartition with a tem-
perature T1/10 and random phases; finally for the thermometer we chose
initial data in the same way as for the heath bath, but at a temperature
T1/10. We let the system evolve for a time 104yf, and then began to
compute the time averages of the kinetic energies of the gases and of the

Temperature in FPU Systems 1107



harmonic energy of the Fermi–Pasta–Ulam system. The results of the
computations for two representative cases are shown in Figs. 1 and 2,
where we report, versus time, the temperatures (i.e., twice the kinetic
energies per particle) of the gases and the harmonic energy per particle of
the Fermi–Pasta–Ulam system (actually, time averages of such quantities
are reported). Let us recall that such three quantities should be equal
according to the equipartition principle, i.e., for sufficiently long times.

In Fig. 1, we started with a temperature T1=1. One sees that, after a
time of order 105yf, the temperatures of two gases and the specific harmo-
nic energy of the Fermi–Pasta–Ulam system have become essentially equal,
although still presenting significant fluctuations. This case should corre-
spond to a situation of thermal equilibrium.

Figure 2 refers instead to the choice of T1=0.4. One sees that the heat
bath and the thermometer still reach the same temperature (although after
a time almost one order of magnitude larger than before), while the specific
harmonic energy per particle of the Fermi–Pasta–Ulam system remains
well below the common temperature of the two gases, up to the observa-
tion time. Actually the curve is so flat that the Fermi–Pasta–Ulam system
can be expected to possibly reach the equilibrium only on a totally different
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Fig. 1. Specific harmonic energy of the FPU system, and twice the specific energies of the
gases, versus time, at high temperature.
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time scale. The global system seems indeed to be in a situation of
metaequilibrium.

It appears, however, that the zeroth law can still be valid, and that the
temperature ‘‘measured’’ by the thermometer is a good empirical one,
because the temperatures of the two gases have become equal. To under-
stand to which quantity of the Fermi–Pasta–Ulam system does this
measured temperature correspond, in Figs. 3 and 4 we report the spectra
(time-averaged energies of the modes versus mode number) of the
Fermi–Pasta–Ulam system at the end of the two runs. Figure 3 refers to the
case of complete thermalization, and correspondingly a complete equipar-
tition among the modes is found, as expected. More interesting is Fig. 4:
here equipartition obtains only among modes of sufficiently low frequency,
say below kcr=10, while the energy starts decreasing for larger values of k,
going down, say for k > 25, to the initial equipartition value 0.04. It does
not appear as a surprise to observe that the mean energy of the low
frequency modes essentially agrees with the common temperature of the
two gases. This seems to indicate that, for our metastable state, the ‘‘good’’
definition of temperature of the Fermi–Pasta–Ulam system is the mean
energy of the (sufficiently) low frequency modes.
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Fig. 2. Same as Fig. 1, at low temperature.
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Fig. 3. Energy spectrum of the FPU system, at high temperature.
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5. CONCLUSIONS

In conclusion, we hope to have shown, through our numerical study of
a Fermi–Pasta–Ulam system in contact with two gases, that there are cases
of metastable equilibrium for which a notion of temperature can be
defined. However, at variance with the familiar case of equilibrium, such a
temperature does not coincide with the ‘‘canonical’’ one, namely twice the
mean kinetic energy per particle.

This has a certain analogy with the case of glasses. We notice however
that the metaequilibrium states met in Fermi–Pasta–Ulam systems present
characteristics which are somehow opposite to those of glasses. Indeed, in
the latter case the lack of thermalization is ascribed to the low frequency
modes and correspondingly the thermometer measures the mean energy of
the high frequency modes, which are the one being in mutual equipartition.

We give now a comment concerning the relations with some recent
works that also deal with the dynamics of nonlinear chains coupled to heat
baths, in particular two heat baths. (9) For a review see ref. 10. We point out
first of all that in all such works the main problem is very different from
the present one. Indeed one looks there for the approach to an equilibrium
(or stationary) state, so that the prossible existence of metaequilibrium
states, which is the main object of the present work, is not even considered.
A further difference concerns the interaction with the heat bath. Indeed,
the models of interaction considered in all those papers are of two types.
The first one amounts essentially to add to the chain a white noise, with the
consequence that all normal modes of the chain are equally excited. This is
qualitatively different from the present model, because we consider
smooth collisions with particles (mimicking an ideal gas), with the conse-
quence that the excitation of the different modes decays exponentially with
the mode frequency; this is an essential ingredient for the establishment of
a metaequilibrium state involving only the low frequency modes. A second
class of works mimicks the reservoir through the so called Nosé–Hoover
thermostat. The connection with our model is not clear, at least to us.

These are the differences. In any case, we have to mention that in the
review article (10) it is pointed out that the mean kinetic energy should not
necessarily be identified with temperature, which is indeed the main point
made in the present paper.

As a final comment, we would like to mention that the possibility of
having a thermodynamics for situations of metaequilibrium, typically
involving the presence of adiabatic invariants, was amply discussed in the
second part of a very interesting paper of Poincaré, (11) which appears to
have been almost completely forgotten. In fact we became aware of such a
paper only after completing the present work, through a conference of
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V. Kozlov. (12) In fact, V. Kozlov was addressing only the problem dealt
with in the first part of the paper of Poincaré, namely how it occurs that
the fast variables of an integrable hamiltonian system approach equilib-
rium, notwithstanding the reversibility and the return property of the
system. In the second part of his paper, Poincaré was instead considering a
situation in which one has at first a quick relaxation to a ‘‘provisional
equilibrium’’ while a ‘‘definitive equilibrium’’ would be attained after a
much larger time, i.e., one is concerned, in his very words, with ‘‘very long
times of first order’’ and ‘‘very long times of second order,’’ which is a
situation analogous to the one discussed in the present paper.
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